

Optical Communications at JPL

Presented

at

DARPA

Steered Agile Laser Beam Workshop

March 24 -25, 1999

by

K. E. Wilson

Presentation Outline

- Optical Communications Demonstrations
- Laser Communications Field-tests
 - Multi-beam Ground-to-space links
 - Horizontal Path Ground-to-ground links
- Atmospheric Visibility Monitoring
- Optical Communications Demonstrator
- Laser Com Terminal Test Station
 - LTES
- Future Optical Communications Developments
 - OCTL
 - International Space Station Demonstration
- Summary

KW 2

Optical Com Demonstrations

Optical Com Demonstrations

DARPA 3/99

Multiple-beam Ground-to-Space Link

• Multiple-beam transmission mitigates effects of scintillation-induced fades on ground-to space link

Four-beam uplink to ETS-VI spacecraft

DARPA 3/99

Horizontal Path Tests of Optical Com Demonstrator

Strawberry Peak and TMF Stations

TMF 24" telescope dome used as receiver

Coude Room Optical Assembly

OCD set up at Strawberry Peak

JPL

Multi-Beam Scintillation Measurements

- Scintillation index of N beams should decrease as 1/N (N=4 for demo)

Photodiode Signal (mV)

Single Beams		<u>4-Beams</u>	
Beam 1 Beam 2	1.04 0.76	0.34 (0.20 predicted)	
Beam 3	0.75		
Beam 4	0.72		

Measured standard deviations of intensity (Normalized)

Single Beams	Beam 1	0.50
	Beam 2	0.82
	Beam 3	0.68
	Beam 4	0.73

4- Beams

0.22 (0.17 predicted)

Autonomous Visibility Monitoring Instrumentation at TMF

• Visibility monitoring stations at Mt. Lemmon AZ, Goldstone CA and Table Mountain CA autonomously measure atmospheric transmission at visible and near-IR wavelengths

AVM at TMF

JPL

Future Optical Com Developments (TMF)

- Optical Communications Telescope Laboratory is a multi-function laboratory with principal focus on optical communications.
- Telescope is R & D terminal designed to support future NASA optical communications research
- Telescope request for proposal was let Feb. '99
 - Contract expected to be et April'99
- Building construction expected to begin May '99

OCTL telescope, pier and foundation

Laser Terminal Evaluation Station

- LTES is a high optical quality instrument that has been used to characterize the performance of STRV-2 and OCD laser communications terminals
 - Measures divergence, acquisition and tracking performance, optical output power, and BERs of Lasercom terminals up to 1.4 Gbps data rates
 - Replacement of appropriate of beamsplitters and detectors allows operating to extend out to 2 μm

Optical Communications Demonstrator

KW 10

Artist's Concept of OCTL

International Space Station

Flight 14 3 10/02

Flight System integrates to a nadir-facing EXPRESS Pallet Adapter

Summary

- JPL's optical communications program has:
 - Demonstrated optical communications to spacecraft at deep space and geostationary ranges
 - Demonstrated advantages of multi-beam transmissions in groundto-ground and ground-to space experiments
 - Developed an optical communications terminal that is readily converted from deep space to Earth-orbiting applications
 - Developed laboratory and field capabilities to evaluate optical communications terminal performance
- The program is supporting:
 - Construction of an optical communications laboratory at its TMF to support future demonstrations (ground-to-ground to space-toground)
 - Continuing development of visibility models from statistics acquired from autonomous monitoring stations in the southwestern US.
 - Development of optical com terminal for space-to-ground link form ISS in 2002

KW 15